

Solution Sheet 4

In this problem sheet, unless otherwise stated, for a Gaussian measure μ on \mathbb{R}^n we fix $m \in \mathbb{R}^n$ and $K \in \mathbb{R}^{n \times n}$ such that for all $\lambda \in \mathbb{R}^n$,

$$\int_{\mathbb{R}^n} e^{i\langle \lambda, x \rangle} \mu(dx) = e^{i\langle \lambda, m \rangle - \frac{1}{2}\langle K\lambda, \lambda \rangle}. \quad (1)$$

We also define the Fourier Transform of a Borel Measure ν on \mathbb{R}^n by

$$\hat{\nu}(\xi) = \int_{\mathbb{R}^n} e^{i\langle \xi, x \rangle} \nu(dx) \quad (2)$$

and for ν on a Banach Space E , $\hat{\nu} : E^* \rightarrow \mathbb{C}$, by

$$\hat{\nu}(l) = \int_E e^{il(x)} \nu(dx).$$

Exercise 4.1.

For $y \in \mathbb{R}^n$, prove that δ_y is a Gaussian measure. If $y \in E$ for a Banach Space E , is δ_y a Gaussian measure?

Proof. By definition for $y \in \mathbb{R}^n$,

$$\int_{\mathbb{R}^n} e^{i\langle \lambda, x \rangle} \delta_y(dx) = e^{i\langle \lambda, y \rangle}$$

hence δ_y satisfies (1) for $m = y$, $K = 0$. The second part is true: we are required to prove that for every $l \in E^*$, the push-forward measure $l_*\delta_y$ is a Gaussian measure on \mathbb{R} . Indeed,

$$\int_{\mathbb{R}} e^{i\langle \lambda, x \rangle} l_*\delta_y(dx) = \int_{\mathbb{R}} e^{i\langle \lambda, l(x) \rangle} \delta_y(dx) = e^{i\langle \lambda, l(y) \rangle}$$

hence $l_*\delta_y$ satisfies (1) for $m = l(y)$, $K = 0$. □

Exercise 4.2.

Let μ, ν be probability measures on a separable Banach Space E .

1. Show that if $l_*\mu = l_*\nu$ for all $l \in E^*$, then $\mu = \nu$.

Hint: As a consequence of the Hahn-Banach Separation Theorem, every closed ball $B \subset E$ admits the representation $B = \bigcap_{i \in I} A_i$ for some countable indexing set I , and for sets A_i of the form $A_i = \{x \in E : l_i(x) \leq c\}$.

2. Prove that if $\hat{\mu}(l) = \hat{\nu}(l)$ for all $l \in E^*$, then $\mu = \nu$.

Proof.

1. We assume that $l_*\mu = l_*\nu$ for all $l \in E^*$, then considering Borel sets $(-\infty, c]$ in \mathbb{R} , we have that $\mu(l^{-1}(-\infty, c])) = \nu(l^{-1}(-\infty, c]))$ or in other words, $\mu(\{x \in E : l(x) \leq c\}) = \nu(\{x \in E : l(x) \leq c\})$. Therefore all sets of the form A_i as in the hint satisfy $\mu(A_i) = \nu(A_i)$, so all closed balls $B \subset E$ are such that $\mu(B) = \nu(B)$. Closed balls generate the Borel σ -algebra, from which standard $\pi - \lambda$ theory allows us to conclude that the measures are equal.

2. By assumption,

$$\int_E e^{il(x)} \mu(dx) = \int_E e^{il(x)} \nu(dx)$$

for all $l \in E^*$. Note that for any $\xi \in \mathbb{R}$ we have that $\xi l \in E^*$, defined by $(\xi l)(x) = \xi l(x)$, hence

$$\int_E e^{i\xi l(x)} \mu(dx) = \int_E e^{i\xi l(x)} \nu(dx)$$

for all $l \in E^*$ and $\xi \in \mathbb{R}$. Taking the push-forward measure in each integral,

$$\widehat{l_*\mu}(\xi) = \int_{\mathbb{R}} e^{i\xi x} l_* \mu(dx) = \int_E e^{i\xi x} l_* \nu(dx) = \widehat{l_*\nu}(\xi).$$

Now we use that the Fourier transform on \mathbb{R} determines the measure (Proposition 2.4.2), hence $l_*\mu = l_*\nu$ for all $l \in E^*$, so by the previous part $\mu = \nu$.

□

Exercise 4.3.

1. Let $\{X_1, \dots, X_N\}$ be independent random variables such that each X_j is Gaussian on \mathbb{R}^n , and $a_j \in \mathbb{R}$. Show that $\sum_{j=1}^N a_j X_j$ is Gaussian on \mathbb{R}^n .
2. Let $\{X_1, \dots, X_N\}$ be independent random variables such that each X_j is Gaussian on \mathbb{R} , and $a_j \in E$ for some Banach Space E . Show that $\sum_{j=1}^N a_j X_j$ is Gaussian on E .

Proof.

1. Each X_j is Gaussian means, by definition, for μ_j the law of X_j ,

$$\mathbb{E} \left(e^{i\langle \lambda, X_j \rangle} \right) = \int_{\mathbb{R}^n} e^{i\langle \lambda, x \rangle} \mu_j(dx) = e^{i\langle \lambda, m_j \rangle - \frac{1}{2} \langle K_j \lambda, \lambda \rangle} \quad (3)$$

for some m_j, K_j . For $\sum_{j=1}^N a_j X_j$ we use $e^{i\langle \lambda, \sum_{j=1}^N a_j X_j \rangle} = e^{i\sum_{j=1}^N a_j \langle \lambda, X_j \rangle} = \prod_{j=1}^N e^{i\langle a_j \lambda, X_j \rangle}$ such that, at first by independence and then by (3),

$$\begin{aligned} \mathbb{E} \left(e^{i\langle \lambda, \sum_{j=1}^N a_j X_j \rangle} \right) &= \prod_{j=1}^N \mathbb{E} \left(e^{i\langle a_j \lambda, X_j \rangle} \right) \\ &= \prod_{j=1}^N e^{i\langle a_j \lambda, m_j \rangle - \frac{1}{2} \langle K_j a_j \lambda, a_j \lambda \rangle} \\ &= \prod_{j=1}^N e^{i\langle \lambda, m_j a_j \rangle - \frac{1}{2} \langle a_j^2 K_j \lambda, \lambda \rangle} \\ &= e^{i\langle \lambda, \sum_{j=1}^N m_j a_j \rangle - \frac{1}{2} \langle \sum_{j=1}^N a_j^2 K_j \lambda, \lambda \rangle} \end{aligned}$$

as required.

2. Defining $X = \sum_{j=1}^N a_j X_j$ and μ the law of X on E , for any given $l \in E^*$ we consider

$$\int_{\mathbb{R}} e^{i\lambda x} l_* \mu(dx) = \int_{\mathbb{R}} e^{i\lambda l(x)} \mu(dx) = \mathbb{E} \left(e^{i\lambda l(X)} \right).$$

Similarly to the previous part we break the last term up,

$$\begin{aligned}
\mathbb{E} \left(e^{i\lambda l(X)} \right) &= \mathbb{E} \left(e^{i\lambda l(\sum_{j=1}^N a_j X_j)} \right) \\
&= \mathbb{E} \left(e^{\sum_{j=1}^N i\lambda l(a_j) X_j} \right) \\
&= \prod_{j=1}^N \mathbb{E} \left(e^{i\lambda l(a_j) X_j} \right) \\
&= \prod_{j=1}^N e^{i\lambda l(a_j) m_j - \frac{1}{2} (l(a_j))^2 K_j \lambda^2} \\
&= e^{i\lambda \sum_{j=1}^N l(a_j) m_j - \frac{1}{2} \sum_{j=1}^N (l(a_j))^2 K_j \lambda^2}
\end{aligned}$$

demonstrating that $l_*\mu$ is Gaussian for arbitrary $l \in E^*$, concluding the proof. \square

Exercise 4.4.

Consider a sequence of real numbers (ε_n) convergent to zero as $n \rightarrow \infty$, and corresponding Gaussian measures μ_n on \mathbb{R} with mean m and variance ε_n^2 . Prove that (μ_n) converges weakly to δ_m as $n \rightarrow \infty$.

Proof. For any bounded and continuous $f : \mathbb{R} \rightarrow \mathbb{R}$, we are required to prove that

$$\int_{\mathbb{R}} f d\mu_n \longrightarrow \int_{\mathbb{R}} f d\delta_m = f(m).$$

Using the explicit form of the density for μ_n ,

$$\int_{\mathbb{R}} f d\mu_n = \frac{1}{\varepsilon_n \sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-\frac{(x-m)^2}{2\varepsilon_n^2}} dx$$

and with the substitution $y = \frac{x-m}{\varepsilon_n}$, this is further reduced to

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(\varepsilon_n y + m) e^{-\frac{y^2}{2}} dy.$$

The integrand is pointwise convergent to $f(m) e^{-\frac{y^2}{2}}$ due to continuity of f , and as f is bounded we can freely apply the Dominated Convergence Theorem (with dominating function $\sup_{z \in \mathbb{R}} |f(z)| e^{-\frac{y^2}{2}}$) to deduce that this integral converges to

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(m) e^{-\frac{y^2}{2}} dy = f(m)$$

as required. \square

Exercise 4.5.

Let (e_j) be a basis of a separable Hilbert Space H , (Y_j) a collection of independent standard real-valued Gaussian random variables (mean zero and variance one), and $X_n = \sum_{j=1}^n e_j Y_j$. We use $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ for the inner product and norm on H , respectively.

1. Show that the sequence of real-valued functions $(\widehat{\mu_n}(\cdot))$ on H converges pointwise to $e^{-\frac{1}{2}\|\cdot\|^2}$.
2. Prove that Lévy's Continuity Theorem, Theorem 2.4.6, does not hold if one replaces \mathbb{R}^d by a general separable Hilbert Space H .

Proof. We answer the questions in turn:

1. Recall the definition of the Fourier transform for $z \in H$,

$$\widehat{\mu_n}(z) = \int_{\mathbb{R}} e^{i\langle z, x \rangle} \mu_n(dx) = \mathbb{E} \left(e^{i\langle z, X_n \rangle} \right).$$

Now exactly as in Exercise 4.3 part 2, with $\lambda = 1$, $l(x) = \langle z, x \rangle$, $m_j = 0$ and $K_j = 1$, this quantity is simply

$$e^{-\frac{1}{2} \sum_{j=1}^n \langle z, e_j \rangle^2}.$$

Taking the limit as $n \rightarrow \infty$ gives the result.

2. We have shown that the sequence of Fourier transforms $(\widehat{\mu_n})$ converges pointwise to a function which is continuous at zero. To prove that the theorem does not hold in this context, we show that (μ_n) cannot converge weakly. We claim that it is sufficient to show that the collection (μ_n) is not tight: indeed if (μ_n) is weakly convergent then it is certainly relatively compact, hence tight by Prohorov's Theorem (Theorem 2.3.8). We demonstrate that (μ_n) cannot be tight by showing that for every $K \subset H$ compact, $\limsup_{n \rightarrow \infty} \mu_n(K) = 0$. Recall that every compact K is contained in some closed ball around the origin, B_R . Then

$$\mu_n(B_R) = \mathbb{P} (\|X_n\| \leq R) = \mathbb{P} (\|X_n\|^2 \leq R^2) = \mathbb{P} \left(\sum_{j=1}^n Y_j^2 \leq R^2 \right).$$

Note that $\sum_{j=1}^n Y_j^2$ is a chi-squared distribution with n degrees of freedom, hence this expression is just the cumulative distribution function of the chi-squared distribution, which is known to approach zero as n goes to infinity.

□

Exercise 4.6

Let T be a positive symmetric linear operator on a separable Hilbert Space. Prove that its trace as in Definition 2.6.6 is independent of the choice of basis.

Proof. Consider two different bases for H , (e_n) and (a_k) . Recall that as T is positive and symmetric, there exists a positive symmetric linear operator \sqrt{T} such that $(\sqrt{T})^2 = T$. By direct calculation,

$$\sum_{n=1}^{\infty} \langle T e_n, e_n \rangle = \sum_{n=1}^{\infty} \langle \sqrt{T} \sqrt{T} e_n, e_n \rangle = \sum_{n=1}^{\infty} \langle \sqrt{T} e_n, \sqrt{T} e_n \rangle = \sum_{n=1}^{\infty} \|\sqrt{T} e_n\|^2 = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \langle \sqrt{T} e_n, a_k \rangle^2.$$

Note that we can change the order of summation by Fubini-Tonelli as the summand is non-negative. Thus we further reduce this to

$$\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \langle \sqrt{T} e_n, a_k \rangle^2 = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \langle e_n, \sqrt{T} a_k \rangle^2 = \sum_{k=1}^{\infty} \|\sqrt{T} a_k\|^2 = \sum_{k=1}^{\infty} \langle T a_k, a_k \rangle$$

as required.

□