
Solution Sheet 4

In this problem sheet, unless otherwise stated, for a Gaussian measure µ on Rn we fix m ∈ Rn

and K ∈ Rn×n such that for all λ ∈ Rn,∫
Rn

ei⟨λ,x⟩µ(dx) = ei⟨λ,m⟩− 1
2
⟨Kλ,λ⟩. (1)

We also define the Fourier Transform of a Borel Measure ν on Rn by

ν̂(ξ) =

∫
Rn

ei⟨ξ,x⟩ν(dx) (2)

and for ν on a Banach Space E, ν̂ : E∗ → C, by

ν̂(l) =

∫
E
eil(x)ν(dx).

Exercise 4.1.

For y ∈ Rn, prove that δy is a Gaussian measure. If y ∈ E for a Banach Space E, is δy a
Gaussian measure?

Proof. By definition for y ∈ Rn, ∫
Rn

ei⟨λ,x⟩δy(dx) = ei⟨λ,y⟩

hence δy satisfies (1) for m = y, K = 0. The second part is true: we are required to prove that for
every l ∈ E∗, the push-forward measure l∗δy is a Gaussian measure on R. Indeed,∫

R
ei⟨λ,x⟩l∗δy(dx) =

∫
R
ei⟨λ,l(x)⟩δy(dx) = ei⟨λ,l(y)⟩

hence l∗δy satisfies (1) for m = l(y), K = 0.

Exercise 4.2.

Let µ, ν be probability measures on a separable Banach Space E.

1. Show that if l∗µ = l∗ν for all l ∈ E∗, then µ = ν.

Hint: As a consequence of the Hahn-Banach Separation Theorem, every closed ball B ⊂ E
admits the representation B =

⋂
i∈I Ai for some countable indexing set I, and for sets Ai of

the form Ai = {x ∈ E : li(x) ≤ c} .

2. Prove that if µ̂(l) = ν̂(l) for all l ∈ E∗, then µ = ν.

Proof. h

1. We assume that l∗µ = l∗ν for all l ∈ E∗, then considering Borel sets (−∞, c] in R, we
have that µ

(
l−1(−∞, c])

)
= ν

(
l−1(−∞, c])

)
or in other words, µ ({x ∈ E : l(x) ≤ c}) =

ν ({x ∈ E : l(x) ≤ c}). Therefore all sets of the form Ai as in the hint satisfy µ(Ai) = ν(Ai), so
all closed balls B ⊂ E are such that µ(B) = ν(B). Closed balls generate the Borel σ−algebra,
from which standard π − λ theory allows us to conclude that the measures are equal.
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2. By assumption, ∫
E
eil(x)µ(dx) =

∫
E
eil(x)ν(dx)

for all l ∈ E∗. Note that for any ξ ∈ R we have that ξl ∈ E∗, defined by (ξl)(x) = ξl(x),
hence ∫

E
eiξl(x)µ(dx) =

∫
E
eiξl(x)ν(dx)

for all l ∈ E∗ and ξ ∈ R. Taking the push-forward measure in each integral,

l̂∗µ(ξ) =

∫
R
eiξxl∗µ(dx) =

∫
E
eiξxl∗ν(dx) = l̂∗ν(ξ).

Now we use that the Fourier transform on R determines the measure (Proposition 2.4.2),
hence l∗µ = l∗ν for all l ∈ E∗, so by the previous part µ = ν.

Exercise 4.3.

1. Let {X1, . . . , XN} be independent random variables such that each Xj is Gaussian on Rn,

and aj ∈ R. Show that
∑N

j=1 ajXj is Gaussian on Rn.

2. Let {X1, . . . , XN} be independent random variables such that each Xj is Gaussian on R, and
aj ∈ E for some Banach Space E. Show that

∑N
j=1 ajXj is Gaussian on E.

Proof. h

1. Each Xj is Gaussian means, by definition, for µj the law of Xj ,

E

(
ei⟨λ,Xj⟩

)
=

∫
Rn

ei⟨λ,x⟩µj(dx) = ei⟨λ,mj⟩− 1
2
⟨Kjλ,λ⟩ (3)

for some mj ,Kj . For
∑N

j=1 ajXj we use e
i⟨λ,

∑N
j=1 ajXj⟩ = ei

∑N
j=1 aj⟨λ,Xj⟩ = ΠN

j=1e
i⟨ajλ,Xj⟩ such

that, at first by independence and then by (3),

E

(
ei⟨λ,

∑N
j=1 ajXj⟩

)
= ΠN

j=1E

(
ei⟨ajλ,Xj⟩

)
= ΠN

j=1e
i⟨ajλ,mj⟩− 1

2
⟨Kjajλ,ajλ⟩

= ΠN
j=1e

i⟨λ,mjaj⟩− 1
2
⟨a2jKjλ,λ⟩

= ei⟨λ,
∑N

j=1 mjaj⟩− 1
2
⟨
∑N

j=1 a
2
jKjλ,λ⟩

as required.

2. Defining X =
∑N

j=1 ajXj and µ the law of X on E, for any given l ∈ E∗ we consider∫
R
eiλxl∗µ(dx) =

∫
R
eiλl(x)µ(dx) = E

(
eiλl(X)

)
.
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Similarly to the previous part we break the last term up,

E

(
eiλl(X)

)
= E

(
eiλl(

∑N
j=1 ajXj)

)
= E

(
e
∑N

j=1 iλl(aj)Xj

)
= ΠN

j=1E

(
eiλl(aj)Xj

)
= ΠN

j=1e
iλl(aj)mj− 1

2
(l(aj))

2Kjλ
2

= eiλ
∑N

j=1 l(aj)mj− 1
2

∑N
j=1(l(aj))

2Kjλ
2

demonstrating that l∗µ is Gaussian for arbitrary l ∈ E∗, concluding the proof.

Exercise 4.4.

Consider a sequence of real numbers (εn) convergent to zero as n → ∞, and corresponding
Gaussian measures µn on R with mean m and variance ε2n. Prove that (µn) converges weakly to
δm as n → ∞.

Proof. For any bounded and continuous f : R → R, we are required to prove that∫
R
fdµn −→

∫
R
fdδm = f(m).

Using the explicit form of the density for µn,∫
R
fdµn =

1

εn
√
2π

∫
R
f(x)e

− (x−m)2

2ε2n dx

and with the substitution y = x−m
εn

, this is further reduced to

1√
2π

∫
R
f(εny +m)e

−y2

2 dy.

The integrand is pointwise convergent to f(m)e
−y2

2 due to continuity of f , and as f is bounded we

can freely apply the Dominated Convergence Theorem (with dominating function supz∈R|f(z)|e
−y2

2 )
to deduce that this integral converges to

1√
2π

∫
R
f(m)e

−y2

2 dy = f(m)

as required.

Exercise 4.5.

Let (ej) be a basis of a separable Hilbert Space H, (Yj) a collection of independent standard
real-valued Gaussian random variables (mean zero and variance one), and Xn =

∑n
j=1 ejYj . We

use ⟨·, ·⟩ and ∥·∥ for the inner product and norm on H, respectively.
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1. Show that the sequence of real-valued functions (µ̂n(·)) on H converges pointwise to e−
1
2
∥·∥2 .

2. Prove that Lévy’s Continuity Theorem, Theorem 2.4.6, does not hold if one replaces Rd by a
general separable Hilbert Space H.

Proof. We answer the questions in turn:

1. Recall the definition of the Fourier transform for z ∈ H,

µ̂n(z) =

∫
R
ei⟨z,x⟩µn(dx) = E

(
ei⟨z,Xn⟩

)
.

Now exactly as in Exercise 4.3 part 2, with λ = 1, l(x) = ⟨z, x⟩, mj = 0 and Kj = 1, this
quantity is simply

e−
1
2

∑n
j=1⟨z,ej⟩2 .

Taking the limit as n → ∞ gives the result.

2. We have shown that the sequence of Fourier transforms (µ̂n) converges pointwise to a function
which is continuous at zero. To prove that the theorem does not hold in this context, we show
that (µn) cannot converge weakly. We claim that it is sufficient to show that the collection
(µn) is not tight: indeed if (µn) is weakly convergent then it is certainly relatively compact,
hence tight by Prohorov’s Theorem (Theorem 2.3.8). We demonstrate that (µn) cannot be
tight by showing that for every K ⊂ H compact, lim supn→∞ µn(K) = 0. Recall that every
compact K is contained in some closed ball around the origin, BR. Then

µn(BR) = P (∥Xn∥ ≤ R) = P
(
∥Xn∥2 ≤ R2

)
= P

 n∑
j=1

Y 2
j ≤ R2

 .

Note that
∑n

j=1 Y
2
j is a chi-squared distribution with n degrees of freedom, hence this ex-

pression is just the cumulative distribution function of the chi-squared distribution, which is
known to approach zero as n goes to infinity.

Exercise 4.6

Let T be a positive symmetric linear operator on a separable Hilbert Space. Prove that its trace
as in Definition 2.6.6 is independent of the choice of basis.

Proof. Consider two different bases forH, (en) and (ak). Recall that as T is positive and symmetric,

there exists a positive symmetric linear operator
√
T such that

(√
T
)2

= T . By direct calculation,

∞∑
n=1

⟨Ten, en⟩ =
∞∑
n=1

⟨
√
T
√
Ten, en⟩ =

∞∑
n=1

⟨
√
Ten,

√
Ten⟩ =

∞∑
n=1

∥
√
Ten∥2 =

∞∑
n=1

∞∑
k=1

⟨
√
Ten, ak⟩2.

Note that we can change the order of summation by Fubini-Tonelli as the summand is non-negative.
Thus we further reduce this to

∞∑
k=1

∞∑
n=1

⟨
√
Ten, ak⟩2 =

∞∑
k=1

∞∑
n=1

⟨en,
√
Tak⟩2 =

∞∑
k=1

∥
√
Tak∥2 =

∞∑
k=1

⟨Tak, ak⟩

as required.
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